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Outline

EOF analysis and annular modes
NAM and SAM from MLS GPH, CO, and H,0
Vertical descent of NAM and SAM

Descent in the middle atmosphere
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e Perturbations at 50 km descend to the lowermost
stratosphere;

* Tropospheric weather patterns follow;

* Surface pressure perturbation patterns are called the Arctic
Oscillation (AO) pattern;

e Stratospheric events show impacts on location of storm tracks.

* MLS observations — up to 90km. EOF analysis from Nov. —
March.
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- Vertical and horizontal gradients of zonal mean CO and H20O structure.
- How does the polar descent shape up the tracer distribution?
- What is going to change during SSW? -> with strong perturbations.
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If the tracer distribution has a meridional gradient that is not constant with height and
time, and has a pronounced maximum somewhere, sometime, it may contain downward
transport information.
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summary

NAM/SAM (GPH) dominates the variance of polar
winter in a broad range of altitude.

MLS CO acts as a good tracer to polar
atmospheric dynamics down to 30 km.

More Rapid descent occurs in the upper
mesosphere than in the stratosphere.

Strong coupling is evident between middle and
upper atmospheric CNAM, through interactions
between planetary and gravity waves.



Kawamoto and Shiotani (2000)

HALOE CH4 inside the
Antarctic vortex

1.2-1.8 km/month at 0.6
ppmv with a biennial
variation

Adiabatic heating from the
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Descent means?

e Whole vortex descent?
e Constant mixing ratio gradient?
e QOccurs at the center of air mass? Or at the bottom?
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Time-height development of MLS CO zonal mean anomaly (70N — 82N)

[co(t)/co(mean)] : ratio of CO anomaly to the mean
2009:Jan 1
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Mesospheric descent in February

0.01hPaf

0.1hPar

1hPat

10hPar

100hPar

|
[
|
|
[
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
2

0

-- mixing ratio anomaly descent in higher altitude at 100% level

-- mixing ratio maximum anomaly descent

-- mixing ratio anomaly descent descent in lower altitude at 100% level
-- mixing ratio minimum anomaly descent

Time
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Time-height development of MLS H20 zonal mean anomaly (70N — 82N)

2009:Jan 1
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Mesospheric descent in February
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Comparison with CNAM

descent of maximum CNAM index

- Maximum anomaly descent in CO,
in Feb, 2009, is similar to that of
CNAM

- Descent of CO following 100% CO
anomaly line in Descember 2009, is
slower than that of CNAM



summary

* Slope of the descent at the bottom of air mass
is slower than that from the center of air
mass.
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Mesospheric CO NAM Index

- Mesosphere and stratosphere
CNAM anti- correlated

- Planetary and Gravity wave coupling

-weak vortices in the stratosphere
(low index)

—> Prevents gravity wave propagating
upward

- forming strong vortex in the
mesosphere

- Siskind et al. [2010]
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